日本SMC滑臺氣缸MBT32-30Z-XC68
簡要描述:日本SMC滑臺氣缸MBT32-30Z-XC68負載率β 從對氣缸運行特性的研究可知, 要確定氣缸的實際輸出力是困難的. 于是在研究氣缸和確定氣缸的出力時,常用到負載率的概念.氣缸的負載率β定義為 β= 氣缸的實際負載 F × 100 % 氣缸的理論輸出力 Ft (l3-5) 氣缸的實際負載是由實際工況所決定的,若確定了氣缸負載率 θ,則由定義就能確定
產(chǎn)品型號:
所屬分類:SMC氣缸
更新時間:2024-10-31
廠商性質:經(jīng)銷商
日本SMC滑臺氣缸MBT32-30Z-XC68
⒉汽缸在運行時受力的情況很復雜,除了受汽缸內(nèi)外氣體的壓力差和裝在其中的各零部件的重量等靜載荷外,還要承受蒸汽流出靜葉時對靜止部分的反作用力,以及各種連接管道冷熱狀態(tài)下對汽缸的作用力,在這些力的相互作用下,汽缸易發(fā)生塑性變形造成泄漏。
⒊汽缸的負荷增減過快,特別是快速的啟動、停機和工況變化時溫度變化大、暖缸的方式不正確、停機檢修時打開保溫層過早等,在汽缸中和法蘭上產(chǎn)生很大的熱應力和熱變形。
⒋汽缸在機械加工的過程中或經(jīng)過補焊后產(chǎn)生了應力,但沒有對汽缸進行回火處理加以消除,致使汽缸存在較大的殘余應力,在運行中產(chǎn)生永的變形。
⒌在安裝或檢修的過程中,由于檢修工藝和檢修技術的原因,使內(nèi)缸、汽缸隔板、隔板套及汽封套的膨脹間隙不合適,或是掛耳壓板的膨脹間隙不合適,運行后產(chǎn)生巨大的膨脹力使汽形。
⒍的汽缸密封劑質量不好、雜質過多或是型號不對;汽缸密封劑內(nèi)若有堅硬的雜質顆粒就會使密封面難以緊密的結合。
⒎汽缸螺栓的緊力不足或是螺栓的材質不合格。汽缸結合面的嚴密性主要靠螺栓的緊力來實現(xiàn)的。機組的起?;蚴窃鰷p負荷時產(chǎn)生的熱應力和高溫會造成螺栓的應力松弛,如果應力不足,螺栓的預緊力就會逐漸減小。如果汽缸的螺栓材質不好,螺栓在長時間的運行當中,在熱應力和汽缸膨脹力的作用下被拉長,發(fā)生塑性變形或斷裂,緊力就會不足,使汽缸發(fā)生泄漏的現(xiàn)象
⒏汽缸螺栓緊固的順序不正確。一般的汽缸螺栓在緊固時是從中間向兩邊同時緊固,也就是從垂弧Z大處或是受力變形Z大的地方緊固,這樣就會把變形Z大的處的間隙向汽缸前后的自由
端轉移,Z后間隙漸漸消失。如果是從兩邊向中間緊,間隙就會集中于中部,汽缸結合面形成弓型間隙,引起蒸汽泄漏。
1)氣缸的輸出力 氣缸理論輸出力的設計計算與液壓缸類似,可參見液壓缸的設計計 算.如雙作用單活塞桿氣缸推力計算如下: 理論推力(活塞桿伸出) Ft1=A1p (13-1) 理論拉力(活塞桿縮回) Ft2=A2p 式中 (13-2) Ft1,Ft2--氣缸理論輸出力(N) ; A1,A2--無桿腔,有桿腔活塞面積(m2) ; p - 氣缸工作壓力(Pa) . 實際中, 由于活塞等運動部件的慣性力以及密封等部分的摩擦力, 活塞桿的實際輸出力 小于理論推力,稱這個推力為氣缸的實際輸出力.
氣缸的效率 η 是氣缸的實際推力和理論推力的比值,即 F η= Ft (13-3) 所以 F = η ( A1 p ) (13-4) 氣缸的效率取決于密封的種類,氣缸內(nèi)表面和活塞桿加工的狀態(tài)及潤滑狀態(tài).此外,氣 缸的運動速度,排氣腔壓力,外載荷狀況及管道狀態(tài)等都會對效率產(chǎn)生一定的影響.
氣缸是由缸筒、端蓋、活塞、活塞桿和密封件等組成,其內(nèi)部結構如圖所示:
1)缸筒
缸筒的內(nèi)徑大小代表了氣缸輸出力的大小?;钊诟淄矁?nèi)做平穩(wěn)的往復滑動,缸筒內(nèi)表面的表面粗糙度應達到Ra0.8μm。
SMC、 CM2氣缸活塞上采用組合密封圈實現(xiàn)雙向密封,活塞與活塞桿用壓鉚鏈接,不用螺母。
2)端蓋
端蓋上設有進排氣通口,有的還在端蓋內(nèi)設有緩沖機構。桿側端蓋上設有密封圈和防塵圈,以防止從活塞桿處向外漏氣和防止外部灰塵混入缸內(nèi)。桿側端蓋上設有導向套,以提高氣缸的導
向精度,承受活塞桿上少量的橫向負載,減小活塞桿伸出時的下彎量,延長氣缸壽命。導向套通常燒結含油合金、前傾銅鑄件。端蓋過去常用可鍛鑄鐵,為減輕重量并防銹,常鋁合金壓鑄,微型缸有黃銅材料的。
⒈汽缸是鑄造而成的,汽缸出廠后都要經(jīng)過時效處理,使汽缸在鑄造過程中所產(chǎn)生的內(nèi)應力*消除。如果時效時間短,那么加工好的汽缸在以后的運行中還會變形。
日本SMC滑臺氣缸MBT32-30Z-XC68